Acoustic Crosstalk Reduction Method for CMUT Arrays

Baris Bayram, Goksen G. Yaralioglu, Mario Kupnik, and Butrus T. Khuri-Yakub

Ginzton Laboratory, Stanford University, CA

2006 IEEE Ultrasonics Symposium, Vancouver, Canada

Outline

- Motivation
- Finite element (FE) analysis of a 1-D CMUT array
- Experimental verification
- A new method to reduce crosstalk
- Conclusion

Bayram[©]

Motivation

- To accurately model the crosstalk in CMUT arrays in "linear" and nonlinear operation regimes using time-domain, finite element method (FEM)
- To reduce the crosstalk between array elements using FEM to explore novel methods

Finite Element Model of the Array

Features of the FE Analysis

- Explicit, time-domain solver of a commercially available software (*LS-DYNA 970*)
 - 3-D modeling of an actual CMUT array in detail
 - Memory-efficient, faster calculations for large million-node models
- Electrostatic-structural coupling
 - Electromechanical transducer modeling of the CMUT
- Robust contact implementation
 - CMUT modeling in collapsed and collapse-snapback nonlinear operation modes
- Fast, initial biasing of the CMUT array
 - 40 times faster results in biasing conventional or collapsed modes for a 20-element model
- Verification with interferometer measurement results for an identical CMUT array
 - Accurate and reliable FE results

Bayram[©]

Dispersive Guided Modes

Khuri-Yakub Group, Ginzton Lab, Stanford University

Bayram[©]

Crosstalk Reduction Method

Bayram[©]

Conclusion

- Crosstalk in 1-D CMUT arrays is modeled using LS-DYNA in both conventional and collapsed modes.
- Finite element results are verified with the interferometer measurements.
- Dispersive guided mode is the main crosstalk mechanism.
- A powerful method based on the acoustic band gap is presented to reduce the crosstalk without loss of the pressure of the transmitter element.

